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 Abstract - The term clustering refers to the identification of natural groups within a data set such that instances in the same group are more similar 

than instances in different groups.  Evolutionary algorithms have a history of being applied into clustering analysis. However, most of the existing 

evolutionary clustering techniques fail to detect complex/spiral shaped clusters. They suffer from the usual problem exhibited by evolutionary and 

unsupervised clustering approaches. In this thesis we proposed two different approaches to resolve the overlapping problems in complex shape data. 

The proposed method uses an evolutionary multi objective clustering approach with Genetic Algorithm (GA) using variable length chromosome and 

local search (memetic) and a Fuzzy based Multi objective Algorithm with variable length chromosome and local search (memetic). The Experimental 

results based on several artificial and real-world data show that the proposed Fuzzy based Evolutionary Multi objective Clustering for Overlapping 

Clusters (FEMCOC) can successfully identify overlapping clusters. It also succeeds obtaining non-dominated and near-optimal clustering solutions in 

terms of different cluster quality measures and classification performance. The superiority of the fuzzy based EMCOC over some other multi-objective 

evolutionary clustering algorithms is also confirmed by the experimental results. 

Keywords- Genetic Algorithm (GA), memetic, FEMCOC, EMCOC, Fuzzy based Multi objective Algorithm. 

——————————      —————————— 
 

1. INTRODUCTION 

N this thesis we enhance the existing multi objective 
evolutionary clustering approach with ga using fixed length 
chromosome as ga with variable length chromosome and local 

search. Also with fuzzy ga with variable length chromosome and 
local search. The experimental results based on several artificial 
and real-world data show that the proposed fuzzy genetic based 
emcoc can successfully identify overlapping clusters. it also 
succeeds obtaining non-dominated and near-optimal clustering 
solutions in terms of different cluster quality measures and 
classification performance. The superiority of the fuzzy based 
emcoc over some other multi-objective evolutionary clustering 
algorithms is also confirmed by the experimental results. 

1.1DATA MINING OVERVIEW 

 
Data mining, ―the extraction of hidden predictive information 

from large databases‖, is a powerful new technology with great 
potential to help companies focus on the most important 
information in their data warehouses. Data mining tools predict 
future trends and behaviors, allowing businesses to make 
proactive, knowledge-driven decisions. The automated, 
prospective analyses offered by data mining move beyond the 
analyses of past events provided by retrospective tools typical of 
decision support systems. 

 
1.2 CLASSES OF DATA MINING DATA MINING 

COMMONLY INVOLVE FOUR CLASSES OF TASKS:  
 
Clustering – is the task of discovering groups and structures in 
the data that are in some way or another "similar", without using 
known structures in the data. 

 
       Classification – is the task of generalizing known 

structure to apply to new data. For example, an email 
program might attempt to classify an email as legitimate or 
spam. common algorithms include decision tree learning, 
nearest neighbor, naive bayesian classification, neural 
networks and support vector machines.   

 
Regression – attempts to find a function which models the 

data with the least error.        Association rule learning – 
Searches for relationships between variables. For example a 
supermarket might gather data on customer purchasing 
habits. Using association rule learning, the supermarket can 
determine which products are frequently bought together 
and use this information for marketing purposes.  

 
 
 

1.3 CLUSTERING 

Clustering can be considered the most important 

unsupervised learning problem; so, as every other 

problem of this kind, it deals with finding a structure in a 

collection of unlabeled data. A loose definition of 

clustering could be ―the process of organizing objects 

into groups whose members are similar in some way‖. 

   

 I 

http://en.wikipedia.org/wiki/Cluster_analysis
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Nearest_neighbor_(pattern_recognition)
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Artificial_neural_networks
http://en.wikipedia.org/wiki/Artificial_neural_networks
http://en.wikipedia.org/wiki/Support_vector_machines
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Association_rule_learning
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 FIGURE1 Process of organizing objects into groups 

1.4 CLUSTERING ALGORITHMS 

Clustering algorithms may be classified as listed below: 

 Exclusive Clustering 

 Overlapping Clustering 

 Hierarchical Clustering 

 Probabilistic Clustering 

 

In the first case data are grouped in an exclusive way, so that 

if a certain datum belongs to a definite cluster then it could 

not be included in another cluster. A simple example of that 

is shown in the figure below, where the separation of points 

is achieved by a straight line on a bi-dimensional plane.                                                                                                                                            

On the contrary the second type, the overlapping clustering, 

uses fuzzy sets to cluster data, so that each point may belong 

to two or more clusters with different degrees of 

membership. In this case, data will be associated to an 

appropriate membership value. 

 

 
 

Figure 1.1 Overlapping clustering 

Instead, a hierarchical clustering algorithm is based on 

the union between the two nearest clusters. The 

beginning condition is realized by setting every datum as 

a cluster.  

Four of the most used clustering algorithms: 

 K-means 

 Fuzzy C-means 

 Hierarchical clustering 

 Mixture of Gaussians 

1.5 DISTANCE MEASURE 

  An important component of a clustering algorithm is the 

distance measure between data points. If the components 

of the data instance vectors are all in the same physical 

units then it is possible that the simple Euclidean 

distance metric is sufficient to successfully group similar 

data instances. However, even in this case the Euclidean 

distance can sometimes be misleading. Figure shown 

below illustrates this with an example of the width and 

height measurements of an object. Despite both 

measurements being taken in the same physical units, an 

informed decision has to be made as to the relative 

scaling.  As the figure shows, different scaling can lead to 

different clustering. 
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Figure 1.2  Different scaling can lead to different clustering 

1.6 GENETIC ALGORITHM 

                  A genetic algorithm is a programming technique 

that mimics biological evolution as a problem-solving 

strategy. Given a specific problem to solve, the input to the 

GA is a set of potential solutions to that problem, encoded in 

some fashion, and a metric called a fitness function that 

allows each candidate to be quantitatively evaluated. These 

candidates may be solutions already known to work, with the 

aim of the GA being to improve them, but more often they 

are generated at random. 

      

       The GA then evaluates each candidate according to the 

fitness function. In a pool of randomly generated candidates, 

of course, most will not work at all, and these will be deleted. 

However, purely by chance, a few may hold promise - they 

may show activity, even if only weak and imperfect activity, 

toward solving the problem. These promising candidates are 

kept and allowed to reproduce. Multiple copies are made of 

them, but the copies are not perfect; random changes are 

introduced during the copying process. These digital 

offspring then go on to the next generation, forming a new 

pool of candidate solutions, and are subjected to a second 

round of fitness evaluation.  

 

 

2. METHODS OF SELECTION 

There are many different techniques which a genetic 

algorithm can use to select the individuals to be copied over 

into the next generation, but listed below are some of the 

most common methods.  

Elitist selection: The most fit members of each generation 

are guaranteed to be selected.  

Fitness-proportionate selection: More fit individuals are 

more likely, but not certain, to be selected. 

Roulette-wheel selection: A form of fitness-proportionate 

selection in which the chance of an individual's being 

selected is proportional to the amount by which its 

fitness is greater or less than its competitors' fitness.  

Scaling selection: As the average fitness of the population 

increases, the strength of the selective pressure also 

increases and the fitness function becomes more 

discriminating. This method can be helpful in making 

the best selection later on when all individuals have 

relatively high fitness and only small differences in 

fitness distinguish one from another. 

Tournament selection: Subgroups of individuals are 

chosen from the larger population, and members of each 

subgroup compete against each other. Only one 

individual from each subgroup is chosen to reproduce. 

Rank selection: Each individual in the population is 

assigned a numerical rank based on fitness, and selection 

is based on this ranking rather than absolute difference 

in fitness.  

The advantage of this method is that it can prevent very 

fit individuals from gaining dominance early at the 

expense of less fit ones, which would reduce the 

population's genetic diversity and might hinder attempts 

to find an acceptable solution. 

Generational selection: The offspring of the individuals 

selected from each generation become the entire next 

generation. No individuals are retained between 

generations.  

SSteady-state selection: The offspring of the individuals 

selected from each generation go back into the pre-

existing gene pool, replacing some of the less fit 

members of the previous generation. Some individuals 

are retained between generations. 
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2.1 METHODS OF CHANGE 

Once selection has chosen fit individuals, they must be 

randomly altered in hopes of improving their fitness for the 

next generation. There are two basic strategies to accomplish 

this. The first and simplest is called mutation. Just as 

mutation in living things changes one gene to another, so 

mutation in a genetic algorithm causes small alterations at 

single points in an individual's code. 

The second method is called crossover, and entails choosing 

two individuals to swap segments of their code, producing 

artificial "offspring" that are combinations of their parents. 

This process is intended to simulate the analogous process of 

recombination that occurs to chromosomes during sexual 

reproduction. Common forms of crossover include single-

point crossover, in which a point of exchange is set at a 

random location in the two individuals' genomes, and one 

individual contributes all its code from before that point and 

the other contributes all its code from after that point to 

produce an offspring, and uniform crossover, in which the 

value at any given location in the offspring's genome is either 

the value of one parent's genome at that location or the value 

of the other parent's genome at that location, chosen with 

50/50 probability. 

 

 

 

Figure 2: Crossover and mutation 

 

 

The above diagrams illustrate the effect of each of these 

genetic operators on individuals in a population of 8-bit 

strings. The upper diagram shows two individuals 

undergoing single-point crossover; the point of exchange is 

set between the fifth and sixth positions in the genome, 

producing a new individual that is a hybrid of its 

progenitors. The second diagram shows an individual 

undergoing mutation at position 4, changing the 0 at that 

position in its genome to a 1. 

 

2.2 EVOLUTIONARY MULTI OBJECTIVE 

OPTIMIZATION 

Even though some real world problems can be reduced to 

a matter of single objective very often it is hard to define 

all the aspects in terms of a single objective. Defining 

multiple objectives often gives a better idea of the task. 

Multi objective optimization has been available for about 

two decades, and recently its application in real world 

problems is continuously increasing. In contrast to the 

plethora of techniques available for single-objective 

optimization, relatively few techniques have been 

developed for multi objective optimization. In single 

objective optimization, the search space is often well 

defined.  

 

2.3 MULTI OBJECTIVE MODEL SELECTION 

After dealing with the generation of clustering solutions 

in the previous section, turn our interest to model 

selection, that is the identification of one or several 

promising solutions from a large set of given clustering 

solutions. Model selection is particularly relevant for 

multi objective clustering, as the algorithm does not 

return a single solution, but a set of solutions 

representing an approximation to the Pareto front.  

The individual partitioning in this approximation set 

correspond to different trade-offs between the two 

objectives but also consist of different numbers of 

clusters. While this may be a very useful feature under 

certain circumstances other applications may require the 

automatic selection of just one `best' solution. In this 

section, a method for identifying the most promising 

clustering solutions in the candidate set.  

We will also show how this methodology, originally 

developed for MOCK, can also be applied to analyze the 

output of other clustering algorithms. 

2.4  MOTIVATION OF THE RESEARCH                     
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Identification of overlapping clusters in complex data has 

been remaining as the problem to tackle. To the best 

knowledge, no evolutionary and unsupervised clustering 

approach is able to detect it successfully. Most of the existing 

evolutionary clustering techniques fail to detect 

complex/spiral shaped clusters. In the proposed research, to 

resolve the overlapping problems in complex shape data, 

Genetic Algorithm with variable length chromosome and 

local search, and a Fuzzy GA with variable length 

chromosome and local search are coupled with the existing 

Evolutionary Multi objective Clustering approach. The 

Experimental results based on several artificial and real-

world data show that the proposed fuzzy based EMCOC can 

successfully identify overlapping clusters. It also succeeds 

obtaining non-dominated and near-optimal clustering 

solutions in terms of different cluster quality measures and 

classification performance. 

 

2.5 THE PROBLEM DEFINITION AND THE 

PROPOSED SOLUTION  

        STRATEGY 

 A single objective clustering algorithm cannot find all the 

clusters if different regions of the feature space contain 

clusters of diverse shapes, because its intrinsic criterion may 

not fit well with the data distribution in the entire feature 

space. A related problem is that virtually all existing 

clustering algorithms assume a homogeneous criterion over 

the entire feature space. As a result, all the clusters detected 

tend to be similar in shape and often have similar data 

density. Most of the existing evolutionary clustering 

techniques fail to detect complex/spiral shaped clusters. 

They suffer from the usual problem exhibited by 

evolutionary and unsupervised clustering approaches.  

In this, two different evolutionary multi objective clustering 

approaches are suggested to resolve the overlapping 

problems in complex shape data. A fuzzy GA based 

evolutionary multi objective method is proposed to detect the 

overlapping clusters.  

 

2.6 INITIALIZATION BASED ON RANDOM VORONOI CELLS  

In preliminary work not reported here, we investigated an 

alternative representation for our EA to use, based on 

optimizing Voronoi cells. This representation was 

inspired by , where an EA was used to optimize the 

location of k cluster `centers', to minimize overall 

variance when the data points were assigned to the 

nearest center. This GA achieves results similar to the k-

means algorithm. Our idea was to extend this 

representation by allowing the EA to use j > k cluster 

`centers'  to enable it to cope better with non-hyper 

spherical, and especially elongated and intertwined, 

clusters. In our representation, in addition to the location 

of the j centers, each center's label is also evolved on the 

genotype. However, we found that the Voronoi coding is 

very effective at generating diverse and high quality 

clustering solutions that can be used to `seed' our direct-

coded EA. The initialization that we have found 

effective, and which we use in all our experiments, is to 

set j = 2k, and to place the cluster centers uniformly at 

random in a rectangular polytypic centered on the data, 

and of side-length twice the range of the data, in each 

objective.  
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2.7 DIRECTED MUTATION BASED ON NEAREST NEIGHBORS 

Numerous recombination and mutation operators in 

preliminary investigations not reported here, including 

Grouping GA-based methods, as well as multi-parent 

recombination based on expectation maximization of an 

ensemble.  

 

The integer g itself is chosen, independently at each mutation 

event, uniformly at random in 0::N=k. This operator enables 

very large changes to result from a single mutation, yet 

constrains them to be `reasonable' moves which respect local 

distance relations. On the other hand, very small changes in 

the clustering solution are also possible. The operator works 

in linear time since the nearest neighbors of every data item 

can be pre-computed once at the beginning of the EA's run.  

 
 

Figure 3 Numerous recombination and mutation operators 

 

3. EVOLUTIONARY ALGORITHMS FOR MULTI OBJECTIVE 

OPTIMIZATION 

A number of stochastic optimization techniques like simulated 
annealing; tabu search, ant colony optimization etc. could be 
used to generate the Pareto set. Just because of the working 
procedure of these algorithms, the solutions obtained very often 
tend to be stuck at a good approximation and they do not 
guarantee to identify optimal trade-offs. Evolutionary algorithm 
is characterized by a population of solution candidates and the 

reproduction process enables to combine existing solutions 
to generate new solutions. Finally, natural selection 
determines which individuals of the current population 
participate in the new population 
 

 
Figure 3.1 Flowchart of evolutionary algorithm iteration 

 

The iterative computation process is illustrated in Figure 

2. Multiobjective evolutionary algorithms can yield a 

whole set of potential solutions, which are all optimal in 

some sense. After the first pioneering work on 

multiobjective evolutionary optimization in the eighties 

several different algorithms have been proposed and 

successfully applied to various problems.  

This is the focus of research on clustering ensembles, 

seeking a combination of multiple partitions that 

provides improved overall clustering of the given data.  

Robustness. Better average performance across the 

domains and datasets. Novelty. Finding a combined 

solution unattainable by any single clustering algorithm. 

Stability and confidence estimation. Clustering solutions 

with lower sensitivity to noise, outliers or sampling 

variations. Clustering uncertainty can be accessed from 

ensemble distributions. Parallelization and Scalability. 

Parallel clustering of data subsets with subsequent 

combination of results. Ability to integrate solutions 

from multiple distributed sources of data or attributes. 

 

3.1MULTIOBJECTIVE OPTIMIZATION USING GENETIC 

ALGORITHMS 

In general, these problems admit multiple solutions, each 
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of which is considered acceptable and equivalent when the 

relative importance of the objectives is unknown. The best 

solution is subjective and depends on the need of the 

designer or the decision maker. As evolutionary algorithms 

are population-based methods, it is straightforward to extend 

them to handle multiple objectives. 

Find the vector . x∗  = [x∗  1 , x∗  2 , . . . , x∗  n ]T of the 

decision variables that will satisfy the m inequality 

constraints 

gi ( . x) ≥ 0, i = 1, 2, . . . ,m (8) and the p equality constraints 

hi ( . x) = 0, i = 1, 2, . . . , p (9) and optimizes the vector function 

f ( . x) = [ f1( . x), f2( . x), . . . , fk ( . x)]T . (10) 

 

The constraints given define the feasible region F which 

contains all the admissible solutions. Any solution outside 

this region is inadmissible since it violates one or more 

constraints. The vector . x∗  denotes an optimal solution in F.  

The concept of Pareto optimality comes handy in the domain 

of multiobjective optimization. A formal definition of Pareto 

optimality from the viewpoint of minimization problem may 

be given as follows. A decision vector x∗  is called Pareto 

optimal if and only if there is no . x that dominates . x∗ , i.e., 

there is no . x such that 

∀ i ∈  {1, 2, . . . , k}, fi ( . x) ≤ fi ( . x∗  ) and ∃ i ∈  {1, 2, . . . , k}, fi ( . x) 

< fi ( . x∗  ). 

  In words, . x∗  is Pareto optimal if there exists no feasible 

vector . x that causes a reduction of some criterion without a 

simultaneous increase in at least another. In general, Pareto 

optimum usually admits a set of solutions called non-

dominated solutions. There are different approaches to 

solving multiobjective optimization problems [13], [18], e.g., 

aggregating, population based non-Pareto, and Pareto-based 

techniques. In aggregating techniques, the different objectives 

are generally combined into one using weighting or goal-

based method. 

3.2 GENETIC ALGORITHM 

A genetic algorithm  is a search heuristic that mimics the 

process of natural evolution. This heuristic is routinely 

used to generate useful solutions to optimization and 

search problems. Genetic algorithms belong to the larger 

class of evolutionary algorithms , which generate 

solutions to optimization problems using techniques 

inspired by natural evolution, such as inheritance, 

mutation, selection, and crossover. 

 

 

 

3.3 METHODOLOGY 

In a genetic algorithm, a population of strings, which 

encode candidate solutions to an optimization problem, 

evolves toward better solutions. Traditionally, solutions 

are represented in binary as strings of 0s and 1s, but 

other encodings are also possible. The evolution usually 

starts from a population of randomly generated 

individuals and happens in generations. In each 

generation, the fitness of every individual in the 

population is evaluated; multiple individuals are 

stochastically selected from the current population and 

modified to form a new population. The new population 

is then used in the next iteration of the algorithm. 

Genetic algorithms find application in bioinformatics, 

phylogenetics, computational science, engineering, 

economics, chemistry, manufacturing, mathematics, 

physics and other fields. 

A typical genetic algorithm requires: 

A genetic representation of the solution domain, a fitness 

function to evaluate the solution domain. A standard 

representation of the solution is as an array of bits. 

Arrays of other types and structures can be used in 

essentially the same way. The main property that makes 

these genetic representations convenient is that their 

parts are easily aligned due to their fixed size, which 

facilitates simple crossover operations. 

3.4 INITIALIZATION 

Initially many individual solutions are randomly 

generated to form an initial population. The population 

http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Optimization_%28mathematics%29
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Population
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Stochastics
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Computational_science
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Genetic_representation
http://en.wikipedia.org/wiki/List_of_academic_disciplines
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Fitness_function
http://en.wikipedia.org/wiki/Bit_array
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size depends on the nature of the problem, but typically 

contains several hundreds or thousands of possible solutions. 

Traditionally, the population is generated randomly, 

covering the entire range of possible solutions. Occasionally, 

the solutions may be "seeded" in areas where optimal 

solutions are likely to be found. 

3.5 SELECTION 

During each successive generation, a proportion of the 

existing population is selected to breed a new generation. 

Individual solutions are selected through a fitness-based 

process, where fitter solutions are typically more likely to be 

selected. Certain selection methods rate the fitness of each 

solution and preferentially select the best solutions. Other 

methods rate only a random sample of the population, as this 

process may be very time-consuming. 

3.6 REPRODUCTION 

CROSSOVER  AND MUTATION  

The next step is to generate a second generation population of 

solutions from those selected through genetic operators: 

crossover and/or mutation. For each new solution to be 

produced, a pair of "parent" solutions is selected for breeding 

from the pool selected previously.  

By producing a "child" solution using the above methods of 

crossover and mutation, a new solution is created which 

typically shares many of the characteristics of its "parents". 

New parents are selected for each new child, and the process 

continues until a new population of solutions of appropriate 

size is generated. Although reproduction methods that are 

based on the use of two parents are more "biology inspired", 

some research suggests more than two "parents" are better to 

be used to reproduce a good quality chromosome. 

             e.g. Given two chromosomes  

   10001001110010010  

                01010001001000011 

     Choose a random bit along the length, say at position 9, and 

swap all the bits after that point so the above become:  

10001001101000011 

01010001010010010 

  

 

 MUTATION RATE 

  This is the chance that a bit within a chromosome will be 

flipped  This is usually a very low value for binary 

encoded genes, say 0.001. So whenever chromosomes are 

chosen from the population the algorithm first checks to 

see if crossover should be applied and then the algorithm 

iterates down the length of each chromosome mutating 

the bits if applicable.  

4. TERMINATION 

This generational process is repeated until a termination 

condition has been reached. Common terminating 

conditions are: 

A solution is found that satisfies minimum criteria 

Fixed number of generations reached 

Allocated budget reached 

The highest ranking solution's fitness is reaching or has 

reached a plateau such that successive iterations no 

longer produce better results 

Manual inspection 

Combinations of the above 

5 EVALUATION OF CLUSTERING  

Typical objective functions in clustering formalize the goal of 

attaining high intra-cluster similarity and low inter-

cluster similarity. This is an internal criterion for the 

quality of a clustering. But good scores on an internal 

criterion do not necessarily translate into good 

effectiveness in an application. An alternative to internal 

http://en.wikipedia.org/wiki/Selection_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Fitness_%28biology%29
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Genetic_operator
http://en.wikipedia.org/wiki/Crossover_%28genetic_algorithm%29
http://en.wikipedia.org/wiki/Mutation_%28genetic_algorithm%29
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criteria is direct evaluation in the application of interest. For 

search result clustering, we may want to measure the time it 

takes users to find an answer with different clustering 

algorithms. This is the most direct evaluation, but it is 

expensive, especially if large user studies are necessary.  

This section introduces four external criteria of clustering 

quality. Purity is a simple and transparent evaluation 

measure.  

Normalized mutual information can be information-

theoretically interpreted. The Rand index penalizes both false 

positive and false negative decisions during clustering. The 

F measure in addition supports differential weighting of 

these two types of errors.  
 

 
Figure 3.2 Purity as an external evaluation criterion for 

cluster quality 

 

To compute purity , each cluster is assigned to the class which 

is most frequent in the cluster, and then the accuracy of this 

assignment is measured by counting the number of correctly 

assigned documents and dividing by . Formally:  

 

 
 

 
where is the set of clusters and is the set of classes. We interpret 

as the set of documents in and as the set of documents 

in in Equation 182. 
 

We present an example of how to compute purity. Bad 
clustering have purity values close to 0, a perfect clustering 
has a purity of 1. Purity is compared with the other three 
measures 

 

 

 

Table 1: The four external evaluation measures applied to the 

clustering. 

 

  purity NMI RI  

lower bound 0.0 0.0 0.0 0.0 

Maximum 1 1 1 1 

value for Figure 16.4 0.71 0.36 0.68 0.46 
 

 

       High purity is easy to achieve when the number of 

clusters is large - in particular, purity is 1 if each 

document gets its own cluster. Thus, we cannot use 

purity to trade off the quality of the clustering against 

the number of clusters.  

A measure that allows us to make this tradeoff is normalized 

mutual information or NMI :  

 

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#eqn:purity
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#fig:clustfg3
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 (183) 

 

is mutual information (cf. Chapter 13 , page 13.5.1 ):  

   (184) 

    (185) 

where , , and are the probabilities of 

a document being in cluster , class , and in the 

intersection of and , respectively. Equation 185 is 

equivalent to Equation 184 for maximum likelihood estimates 

of the probabilities (i.e., the estimate of each probability is the 

corresponding relative frequency).  

 

is entropy  

   (186) 

    (187) 

 

 

Where, again, the second equation is based on maximum 

likelihood estimates of the probabilities.  

in Equation 184 measures the amount of 

information by which our knowledge about the classes 

increases when we are told what the clusters are. The 

minimum of is 0 if the clustering is random with 

respect to class membership. In that case, knowing that a 

document is in a particular cluster does not give us any new 

information about what its class might be. Maximum mutual 

information is reached for a clustering that perfectly recreates 

the classes - but also if clusters in are further subdivided into 

smaller clusters. In particular, a clustering with one-

document clusters has maximum MI. So MI has the same 

problem as purity: it does not penalize large cardinalities and 

thus does not formalize our bias that, other things being 

equal, fewer clusters are better.  

 

The normalization by the denominator  

in Equation 183 fixes this problem 

since entropy tends to increase with the number of 

clusters. For example, reaches its maximum for, which 

ensures that NMI is low for. Because NMI is normalized, 

we can use it to compare clustering’s with different 

numbers of clusters. The particular form of the 

denominator is chosen because  

 

is a tight upper bound on (Exercise 16.7 ). Thus, NMI is 

always a number between 0 and 1.  

An alternative to this information-theoretic interpretation 

of clustering is to view it as a series of decisions, one for 

each 

 

http://nlp.stanford.edu/IR-book/html/htmledition/text-classification-and-naive-bayes-1.html#ch:nbayes
http://nlp.stanford.edu/IR-book/html/htmledition/mutual-information-1.html#p:mutualinfo
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#midef2ml
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#midef2
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#midef2
http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#nmidef
http://nlp.stanford.edu/IR-book/html/htmledition/exercises-3.html#ex:nmibound
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of the pairs of documents in the collection. We want to assign 

two documents to the same cluster if and only if they are 

similar. A true positive (TP) decision assigns two similar 

documents to the same cluster; a true negative (TN) decision 

assigns two dissimilar documents to different clusters. There 

are two types of errors we can commit. A (FP) decision 

assigns two dissimilar documents to the same cluster. A (FN) 

decision assigns two similar documents to different clusters. 

The Rand index ( ) measures the percentage of decisions that 

are correct. That is, it is simply accuracy   

 

 

 

As an example, we compute RI for Figure 16.4 . We first  

compute . The three clusters contain 6, 6, and 5 points, 

respectively, so the total number of ``positives'' or pairs of 

documents that are in the same cluster is:  

 

 (188) 

 

 

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the 

pairs in cluster 3, and the x pair in cluster 3 are true positives:  

 

 
(189

) 

 

 

Thus, .  

                    FN    TN  

      are computed similarly, resulting in the following 

contingency table:  

  Same cluster Different clusters 

Same class   

Different classes   

 

RI is  

 

.  

       The Rand index gives equal weight to false positives and 

false negatives. Separating similar documents is 

sometimes worse than putting pairs of dissimilar 

documents in the same cluster. We can use the F measure 

measuresperf to penalize false negatives more strongly 

than false positives by selecting a value, thus giving 

more weight to recall.  

 

 

 

 

 

 

   

In this paper the fuzzy and hard c-means (FCM/HCM 

respectively) functionals, Jm and J1, are used as fitness 

functions. This allows us to compare performance of the 

GGA with the conventional FCM/HCM algorithms and 

examine GGA optimization performance with similar 

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html#fig:clustfg3
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but different objective functions. It allows comparison with 

other GA work on clustering. Clustering algorithms such as 

FCM which use calculus-based optimization methods can be 

trapped by local extrema in the process of optimizing the 

clustering criterion.  

 

The no dominated sorting genetic algorithm (NSGA) 

proposed was one of the first such EAs. Over the years, the 

main criticisms of the NSGA approach have been as follows. 

High computational complexity of no dominated sorting: The 

currently-used no dominated sorting algorithm has a 

computational complexity of O (MN 3) (where M is the 

number of objectives and N is the population size).  

This makes NSGA computationally expensive for large 

population sizes. This large complexity arises because of the 

complexity involved in the no dominated sorting procedure 

in every generation. 

  

3) Lack of elitism: the elitism can speed up the performance of the 

GA significantly, which also can help preventing the loss of 

good solutions once they are found. 

4) Need for specifying the sharing parameter : Traditional 

mechanisms of ensuring diversity in a population so as to get 

a wide variety of equivalent solutions have relied mostly on 

the concept of sharing. The main problem with sharing is that 

it requires the specification of a sharing parameter ( ). Though 

there has been some work on dynamic sizing of the sharing 

parameter, a parameter-less diversity-preservation 

mechanism is desirable.  

In this paper, we address all of these issues and propose an 

improved version of NSGA, which we call NSGA-II. From 

the simulation results on a number of difficult test problems, 

we find that NSGA-II outperforms two other contemporary 

MOEAs: Pareto-archived evolution strategy (PAES)] and 

strength-Pareto EA (SPEA) in terms of finding a diverse set of 

solutions and in converging near the true Pareto-optimal set. 

Constrained multi objective optimization is important from 

the point of view of practical problem solving, but 

notmuchattention has been paid so far in this respect among 

the EA researchers. In this paper, we suggest a simple 

constraint-handling strategy with NSGA-II that suits 

well for any EA.  

 

6. MEMETIC ALGORITHMS   

A GA is a computational model that mimics the 

biological evolution, whereas a MA, in contrast mimics 

culture evolution. It can be thought of as units of 

information that are replicated while people exchange 

ideas. In a MA, a population consists solely of local 

optimum solutions.Y. S. Ong, M. H. Lim, N. Zhu, and K. 

W. Wong gives a comparative study in Classification of 

Adaptive Memetic Algorithms. One unique feature of 

the adaptive MAs we consider here is the use of multiple 

memes in the memetic search and the decision on which 

meme to apply on an individual is made dynamically.  

This form of adaptive MAs promotes both cooperation 

and competition among various problem-specific memes 

and favors neighborhood structures containing high 

quality solutions that may be arrived at low 

computational efforts. In the first step, the GA 

population may be initialized either randomly or using 

design of experiments technique such as Latin hypercube 

sampling.  

 

3. METHODOLOGY 

6.1 EVOLUTIONARY MULTI OBJECTIVE 

CLUSTERING USING GA WITH FIXED 

LENGTH CHROMOSOME 

Evolutionary clustering is one of the emergent and 

effective unsupervised clustering approaches in 

searching the near-optimal clustering solutions. At 

present, several GA based clustering technique exists. 

However, most of them are limited to a single objective 

and suffer from a number of problems. First, they 

usually ask the user to provide the number of clusters in 

advance, which is, in general, unknown to the users. 

Also, many existing genetic clustering approaches, such 

as evolve fixed-length chromosomes that encode cluster 
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centers as genes. Since the actual number of clusters is 

initially unknown, the fixed-length of chromosomes limits 

the GA to search for the near-optimal clustering solutions. 

Moreover, in complex data, the clustering may have different 

size, mixture of various data distribution, outlier, and linearly 

inseparable clusters. The traditional clustering methods 

utilizing single criterion fail to solve these issues 

simultaneously.  

 

7 IMPLEMENTATION 

7.1 BASIC STEPS 

The approaches where data points are assigned according to 

their distances from cluster centers, it is very usual for any 

data point that its distance from two or more clusters centers 

are the same or equal as shown in Fig. 2(a). In that case, it is 

very difficult to select the cluster center into which that data 

pattern will be assigned. In this thesis, we proposed a new 

idea for solving this overlapping problem as shown in Fig. 

2(b). Let θ 1 and θ2 are two angles between two cluster 

centers and reference point (red point) respectively. If θ 1 is 

less than θ 2, red point is assigned for blue cluster; otherwise 

it will be assigned for orange cluster. Reference point may 

vary for each chromosome. This method can apply not only 

for two clusters but also for more clusters centers when 

distance or similarity is equal. 

 

 

 

 

 

 

 

 

Figure 3.3 (a) Overlapping problem. Fig.3.3 (b). 

Removing problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Evolutionary cycle of EMCOC 
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7.2 JUMPING GENES OPERATIONS AND CROSSOVER 

Jumping genes move around genome in two ways: copy and 

paste, and cut and paste. In copy and paste operation, one or 

more gene replicates itself, and is inserted into a new site, 

while the original one remains unchanged at same 

site.Example of copy and paste operation in case of a single 

and within two chromosomes respectively. 

C1= 0 1 0 0 0 1 

C1= 0 0 1 0 0 1 

 Copy and paste operation in the same chromosome C1. 

C1= 1 0 1 0 0 1 

C1= 1 0 1 0 0 1 

C2= 0 1 0 1 1 0 

C2= 0 1 0 0 1 0 

 Copy and paste operation with two different chromosomes 

C1 & C2 

In cut and paste operation, one or more gene is cut from the 

original site and pasted to a new site. example of cut and 

paste operation in case of a single and within two 

chromosomes respectively. 

C1= 0 1 0 0 0 1 

C1= 0 0 1 1 0 0 

 Cut and paste operation in the same chromosome C1. 

C1= 1 1 0 0 0 1 

C1= 1 1 1 0 0 1 

C2= 0 1 0 0 1 1 

C2= 0 1 0 0 1 0 

       Cut and paste operation with two different 

chromosomes C1 & C2 

In some other existing algorithms, crossover operation is 

performed each time on a single gene position. This 

might yield a total number of clusters (or 1’s) smaller 

than Kmin. In that case, unreasonable offspring may 

often occur, and need to be repaired for many 

generations. To  eliminate this problem, a modified 

version of crossover operator is introduced here. The 

number of clusters in each of a parent pair is counted, 

say, NC1 and NC2 respectively, and a random integer 

NC is generated from the range [1,M], where M = 

Min(NC1, NC2), and then NC gene positions having 

allele 1’s in each of the parents are randomly selected for 

crossover. The parent pair undergo crossover by 

exchanging alleles at the selected gene positions to 

introduce a pair of their offspring. The modified version 

of crossover operation is illustrated as follows: 

Algorithm 1: Modified Crossover 

1. For each pair of chromosomes Cha and Chb 

Evaluate 

 NC1 = number of 1’s in Cha. 

      NC2 = number of 1’s in Chb. 

     M = Min{NC1, NC2} 

2.  Generate a random integer NC from the range [1, M]. 

3.  Randomly select NC gene positions among the genes with 

allele ―1‖ from Cha and form a set  

     Sa of indices of such selected positions. Randomly select 

NC gene positions among the genes  

     swith allele ―1‖ from Chb and form a set Sb of indices of 

such selected positions. 

4. S = Sa ∪ Sb 
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5. for each index i in S Exchange the alleles of chromosomes Cha 

and Chb at gene position i. 

7.3 EMCOC USING GENETIC ALGORITHM WITH VARIABLE 

LENGTH CHROMOSOME AND LOCAL SEARCH 

(MEMETIC) CROSSOVER AND MUTATION 

             Crossover: The purpose of the crossover operation is to 

create two new individual chromosomes from two existing 

chromosomes selected randomly from the current 

population. Typical crossover operations are one point 

crossover, two-point crossover, cycle crossover and uniform 

crossover. In this research, only the simplest one, the one-

point crossover was adopted; the following example 

illustrates this operation (the point for crossover is after the 

4th position): 

Parent1 : Nan ( 88) ( 226) Nan (104) (50) Nan ( 192) 

Parent2 : (127) (88) Nan Nan ( 45) Nan (174) (101) 

Child1 : Nan ( 88) ( 226) Nan ( 45) Nan (174) (101) 

Child2 : (127) (88) Nan Nan ( 104) (50) Nan (192) 

8. MUTATION 

             The non-uniform mutation operator is applied to the 

mutation operation. It selects one of  the parent chromosome 

genes gi and adds to it a random displacement. The operator 

uses two uniform random numbers r1 and r2 drawn from the 

interval [0,1]. The first (r1) is used to determine the direction 

of the displacement while the other (r2) is used to generate 

the magnitude of the displacement. Assuming that gi € [ai, 

bi], where ai and bi are the gene lower and upper bounds, 

respectively, the new variable becomes 

 

 

Where f(G) = [r2(1 − (G/Gmax))]p, G is the current 

generation, Gmax is the maximum number of generations, 

and p is a shape parameter. 

 

8.1 FITNESS FUNCTION 

         Based on crossover and mutation the chromosomes, 

once initialized, iteratively evolve from one generation to 

the next. In order to be able to stop this iterative process, 

a fitness function needs to be defined to measure the 

fitness or adaptability of each chromosome in the 

population. The population then evolves over 

generations in the attempt to minimize the value of 

fitness, also called index. 

8.2 APPLY VARIABLE LENGTH 

             We have used the same chromosome representation 

and crossover operation but for doing. Mathematical 

operations between a integer centroid value and NaN we 

used the following logic. We generated a random 

number σ between [0 1] and if the value of σ is greater 

than 0.5 then we take the integer centroid as resultant 

gene in the child chromosome., and when the value of σ 

is less than 0.5 NaN is taken as the resultant gene in the 

child chromosome. preserved.  

 

 

 

 

 

 

 

 

 

                 Fig 4: Flowchart genetic algorithm with variable 

length chromosome and local search (memetic) 
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8.3 LOCAL SEARCH OPERATOR 

                 While evolutionary algorithms (EAs) are capable of 

exploring and identifying promising regions of the search 

space, they do not exploit the search space well. Hence, local 

search are often used as a complement to intensify 

optimization results of the EAs that concentrated mainly on 

global exploration. With this in mind, many researchers have 

sought to complement the global exploration ability of EAs 

by incorporating dedicated learning or local search (LS) 

heuristics. 

 

                                

 

 

 

 

 

  Fig 5: Flowchart for Local Search Algorithm 

8.4  FUZZY GA BASED EMCOC WITH VARIABLE 

LENGTH CHROMOSOME AND LOCAL SEARCH 

(MEMETIC) 

 The use of variable string length genetic algorithm using 

newly developed point symmetry based distance is proposed 

for automatically evolving the near-optimal K X n non-

degenerate fuzzy partition matrix U*. The set U of all possible 

nondegenerate partition matrices is represented as U = {U ε  

R KXn |  uij = 1; j = 1; : : : n; 0 < uij < n; and uij  ε [0; 1] }. Here 

we have considered the best partition to be the one that 

corresponds to the maximum value of the proposed FSym 

index which is defined later. Here both the number of 

clusters as well as the appropriate fuzzy clustering of the data 

is evolved simultaneously using the search capability of 

genetic algorithms. 

  

The process of selection, crossover, and mutation 

continues for a fixed number of generations or till a 

termination condition is satisfied. For the purpose of 

clustering, each chromosome encodes a possible 

partitioning of the data, the goodness of which is 

computed as a function of an appropriate cluster validity 

index. This index must be optimized in order to obtain 

the best partition. Since the number of clusters is 

considered to be variable, the string lengths of different 

chromosomes in the same population are allowed to 

vary. As a consequence, the crossover and mutation 

operators are suitably modified in order to tackle the 

concept of variable length chromosomes. 

8.5 FITNESS COMPUTATION 

       This is composed of two steps. Firstly membership 

values of n points to different clusters are computed by 

using the newly developed point symmetry based 

distance dps. Next, the FSym-index is computed and 

used as a measure of the fitness of the chromosome. 

8.6 SELECTION 

 Conventional proportional selection is applied on the 

population of strings. Here, a string receives a number of 

copies that is proportional to its fitness in the population. 

8.7 CROSSOVER 

 Crossover operator is used to generate new individual 

and it can retain good features from the current 

generation. For the purpose of crossover, the cluster 

centers are considered to be indivisible, i.e., the crossover 

points can only lie in between two cluster centers. The 

crossover operation, applied stochastically, must ensure 

that information exchange takes place in such a way that 

both the offsprings encode the centers of at least two 

clusters. 

  

 

Following symbols in our crossover operator.  

PA and PB: parent chromosomes. CA and CB: child 
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chromosomes.  

Point and Next point: crossover points.  

Black A and Black B: partial chromosomes between PA and PB in 

each parent. 

1) Randomly pick a value from 5 to length-10 as cross black, 

length is the length of the    chromosome. 

2) Pick a position in parent PA randomly. The second position 

will be equal to the first position plus the value of cross black. 

Then, cross black A is formed with the genes between and  

including the first and second positions. 

3) To form cross black B, repeat step 2 for parent PB. 

4) Find out the exceeded genes from children PA and PB by 

comparing the cross back B and   cross black A and set genes 

to 0. 

5) Move all the genes which value is 0 to the front o. 

6) Exchange the partial schedules which gene value is 0 with 

cross black B and cross black A to generate children CA and 

CB. 

8.8 MUTATION 

        An exchange order mutation operator will be used in this 

genetic algorithm. That is, partial genes (operations) are 

chosen randomly and then their positions are exchanged in 

reverse order. 

The mutate operator can be summarized as follows: 

1) Randomly pick a value of mutate black from 3 to length-1. 

2) Randomly pick a position in parent PA. The second position 

will be equal to the first position plus mutate black. Then, 

mutate black is formed with the genes between and including 

the first and second positions. 

3) Make mutate black in reverse order to create new gene black, 

and replace mutate black make in step 2. The new 

chromosome M1 is child chromosome after clustering is over, 

we evaluate the clusters by calculating the Purity, Rand 

Index, Rate of overlapping and the Time taken for 

clustering using respective calculations. 

9. IMPLEMENTATION RESULTS AND ANALYSIS 

 The Fuzzy based evolutionary multi objective clustering 

for overlapping cluster detection is tested on six 

benchmark data sets known as Wine, Pima, Glass, Iris, 

Cancer and Spiral. Names and characteristics of all data 

sets available on UCI machine learning repository. These 

data sets are used to evaluate the performance of the 

Fuzzy based EMCOC 

  10. RESULTS AND ANALYSIS 

 Purity, Rand index and rate of overlapping clusters are 

the criteria used for cluster evaluation. Therefore, it is 

necessary to analyse the values of purity, rand index and 

rate of overlapping clusters obtained by Fuzzy based 

evolutionary multi objective clustering (FEMCOC), 

EMCOC and variable-length EMCOC for comparing the 

performance of FEMCOC.  

  10.1 COMPARISION TABLE FOR 

PERFORMANCE ANALYSIS   

 

 The comparative results for the Purity, Rand index, Rate 

of overlapping and time taken for clustering obtained by 

FEMCOC, EMCOC and Variable-length EMCOC in the 

cases of Wine, Pima, Glass, Iris, Cancer and Spiral 

datasets are given in Table 1. Bold characters represent 

better results than other methods. It is clear in the table 

that FEMCOC performs better than the other methods in 

most of the cases.  

 

The Comparison Table is:  

*********************************************************************

***** 

Dataset                  Wine           Glass            Pima             Iris              

Cancer            Spiral 
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************************************************************************** 

Purity  Fixed        6.649200     5.952000      5.027600         4.850100       

4.648200        4.981300 

Purity  Variable  7.081700      6.833900      3.773500        6.783700        

5.595000       7.101500 

Purity  Fuzzy      6.404500      6.165000      7.140900        9.503100        

8.710600       7.237600 

 

R.I     Fixed         6.853900     3.663600      1.401200         3.727300       

1.373700        1.408500 

R.I     Variable    1.091300     3.810000      2.340300         3.934100        

2.313100       1.003900 

R.I     Fuzzy        1.786500     3.794400      3.293400         4.026000        

2.878800       1.521100 

 

Rate    Fixed         72                   31             6.650000        1.416700        

7.962500        5.512500 

Rate  Variable     6.912500     1.366700          63                3.750000       

7.525000        4.725000 

Rate    Fuzzy       5.291800     4.587900      1.876200        2.213900        

3.499800        5.516900 

 

 

10.2 CONCLUSION AND FUTURE ENHANCEMENT 

 

Identification of overlapping clusters in complex data has 

been deemed as a challenging problem in the field of 

evolutionary clustering. Our proposed work describes fuzzy 

based Evolutionary Multiobjective clustering algorithm to 

remove this problem. The experimental results 

demonstrate that FEMCOC successfully identify the 

overlapping clusters in complex data set. At the same 

time in evaluate the Purity, Rand index, Rate of 

overlapping clusters and additionally time taken for 

clustering. Additionally we have extended the existing 

EMCOC algorithm with variable length chromosomes 

and local search(memetic) for the comparison analysis.  

 

The significance of method and local search (memetic) 

operations with the proposed algorithm has been clearly 

shown in results. The comparison results show that 

proposed algorithm generally able to detect the 

overlapping clusters efficiently 

 

11. FUTURE ENHANCEMENT 

 For the future work, it will be very interesting to apply 

the proposed procedure for real data sets with an 

abundance of irrelevant or redundant features. As a 

general optimization framework, the proposed algorithm 

can be combined with other evolutionary algorithms. 

Also, FEMCOC can be extended with various fitness 

functions and evaluation measures can be added for 

cluster evaluation. 
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